Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522280

RESUMO

Afforestation on degraded croplands has been proposed as an effective measure to promote ecosystem functions including soil organic carbon (SOC) sequestration. Glomalin-related soil protein (GRSP) plays a crucial role in promoting the accumulation and stability of SOC. Nevertheless, mechanisms underlying the effects of afforestation on GRSP accumulation have not been well elucidated. In the present study, 14 pairs of maize fields and plantation forests were selected using a paired-site approach in a karst region of southwest China. By measuring soil GRSP and a variety of soil biotic and abiotic variables, the pattern of and controls on GRSP accumulation in response to afforestation were explored. The average content of total GRSP (T-GRSP) and its contribution to SOC in the maize field were 5.22 ± 0.29 mg g-1 and 42.33 ± 2.25%, and those in the plantation forest were 6.59 ± 0.32 mg g-1 and 25.77 ± 1.17%, respectively. T-GRSP content was increased by 26.4% on average, but its contribution to SOC was decreased by 39.1% following afforestation. T-GRSP content decreased as soil depth increased regardless of afforestation or not. Afforestation increased T-GRSP indirectly via its positive effects on arbuscular mycorrhizal fungi biomass, which was stimulated by afforestation through elevating fine root biomass or increasing the availability of labile C and N. The suppressed contribution of T-GRSP to SOC following afforestation was due to the relatively higher increase in other SOC components than T-GRSP and the significant increase of soil C:N ratio. Our study reveals the mechanisms underlying the effects of afforestation on T-GRSP accumulation, and is conducive to improving the mechanistic understanding of microbial control on SOC sequestration following afforestation.


Assuntos
Micorrizas , Solo , Ecossistema , Carbono/análise , Proteínas Fúngicas , Glicoproteínas/metabolismo , Micorrizas/química , Micorrizas/metabolismo , China
2.
J Environ Manage ; 355: 120468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430883

RESUMO

Soil depth plays a crucial role in shaping the interactions between soil microbes and nutrient availability. However, there is limited understanding of how bacterial, fungal, and protistan communities respond to different soil depths, particularly in the unique geological context and soil properties of karst regions. Organic matter, total nitrogen, and phosphorus, ammonium, nitrate, and plant root biomass, as well as bacterial and fungal abundances, bacterial and protistan diversity were higher in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, soil pH was higher in the 20-40 cm and soil-rock mixing layers than that in the 0-20 cm soil layer. The soil exchange of calcium, nitrate, and root biomass were identified as the primary factors regulating microbial assemblages across the depth transect. Moreover, co-occurrence network analysis revealed a greater degree of connectivity between protistan taxa and fungal taxa in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, the number of association links between protist-bacteria and bacteria-bacteria was higher in the soil-rock mixing layers compared to the 0-20 cm soil layer. Actinobacteria, Ascomycota, and unclassified protistan taxa were identified as keystones, displaying the highest number of connections with other microbial taxa. Collectively, these results suggested that the increased plant root biomass, coupled with sufficient available nutrient inputs in the upper 0-20 cm soil layer, facilitates strong interactions among fungal and protistan taxa, which play crucial roles in the topsoil. However, as nutrients become less available with increasing depth, competition among bacterial taxa and the predation between bacterial and protistan taxa intensify. Therefore, these findings indicate the interactions among keystone taxa at different soil depths has the potential to generate ecological implications during vegetation restoration in fragile ecosystems.


Assuntos
Ecossistema , Solo , Biomassa , Solo/química , Fungos , Nitratos , Bactérias , Microbiologia do Solo
3.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132734

RESUMO

The influence of lithology and slope position on arbuscular mycorrhizal fungi (AMF) communities has been explored in various ecosystems, but there is a limited understanding of these mechanisms in karst regions. This study focused on typical karst hills with contrasting lithologies, specifically dolomite and limestone. Additionally, three slope positions (upper, middle, and lower) were investigated within each hill in karst forest ecosystems. Total phosphorus (TP) content in the soil was higher in dolomite compared to limestone. Conversely, exchangeable calcium (Ca) was lower in dolomite than in limestone. Notably, the lithology, rather than the slope position, exerted a significant impact on AMF diversity and abundance and the presence of specific AMF taxa. Dolomite exhibited greater AMF richness and a higher Shannon index in comparison to limestone when not accounting for slope position. The AMF community composition differed between dolomite and limestone. For instance, without considering slope position, the relative abundance of Acaulospora, Diversispora, and Paraglomus was higher in dolomite than in limestone, while the relative abundance of Claroideoglomus displayed an opposing trend. Furthermore, a more complex interaction among AMF taxa was observed in dolomite as compared to limestone, as evidenced by an increase in the number of nodes and edges in the co-occurrence networks within the dolomite. The genera Glomus, Claroideoglomus, and Diversispora exhibited a higher number of links with each other and with other AMF taxa. The study identified TP and Ca as the primary factors determining variations in AMF diversity between dolomite and limestone. Consequently, it is imperative to consider the underlying lithology and soil conditions when addressing the restoration of degraded karst hilly areas.

4.
Ying Yong Sheng Tai Xue Bao ; 34(3): 846-852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087669

RESUMO

Sugarcane is the most important sugar crop. Sugarcane smut is one of the major diseases, which could reduce sugarcane yield and quality and seriously threaten the sustainable and healthy development of sugar industry. Microbial control of sugarcane smut is a rapidly emerging green biocontrol technology, with advantage to increase environmental compatibility and soil fertility. In this review, we briefly described the characteristics of Sporisorium scitamineum which causes sugarcane smut, synthesized the the mechanisms underlying the infection of sugarcane by S. scitamineum, and presented the research status of microbial controls of sugarcane smut via the application of bio-organic fertilizers and biopesticides. We then reviewed the mechanisms underlying the suppression of sugarcane smut by microorganisms through competition with pathogens for nutrients and ecological niches, secreting antagonistic substances, and improving plant resistance. It is notable that there are still some problems in the application of microbial control technologies, including poor colonization ability and unstable biocontrol efficiency. Finally, the major directions of future research on the biocontrol of sugarcane smut were proposed from the perspective of improving the biocontrol efficiency. This review would benefit the microbial control of sugarcane smut and the healthy development of sugar industry.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/prevenção & controle , Regulação da Expressão Gênica de Plantas , Ustilaginales/metabolismo , Açúcares
5.
J Fungi (Basel) ; 9(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37108849

RESUMO

Considering the crucial role of soil diazotrophs and root arbuscular mycorrhizal fungi (AMF) in soil nutrient cycling during ecosystem restoration, diazotroph and AMF communities may be determined by slope position. However, the effect of slope position on diazotroph and AMF abundance, diversity, and community composition of karst ecosystems remains unknown. In this study, soil diazotrophs and root AMF characteristics on varying slope positions were assessed in a karst shrub ecosystem. The results displayed that the abundance of soil diazotrophs and root AMF diversity were significantly affected by slope position. Diazotroph abundance accompanied by soil nutrient and plant richness was higher on the lower slopes than the upper slopes, whereas root AMF diversity displayed the opposite trend. The soil diazotroph and root AMF community composition differed among the upper, middle, and lower slopes. The dominant taxa of soil diazotrophs and root AMF at the order level were Rhizobiales and Glomerales, respectively. Moreover, the diazotroph order of Nostocales and the AMF order of Paraglomerales were richer on the upper slopes than on the lower slopes. The slope position directly affected the plant diversity and soil nutrient distribution, indirectly affecting the diazotroph and AMF communities. Increased available nitrogen on the lower slope caused great diazotroph abundance by stimulating plant growth with sufficient carbohydrates. However, low soil nutrients and plant diversity but high plant root biomass induced more root AMF diversity on the upper slope than on the lower slope. Therefore, this study expands the knowledge of soil diazotroph and root AMF ecological functions along different slope positions during vegetation recovery for the successive stages of grass and shrub in the karst region.

6.
Front Microbiol ; 14: 1109272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778847

RESUMO

In order to investigate the carbon sequestration potential of biochar on soil, citrus orchard soils with a forest age of 5 years was taken as the research object, citrus peel biochar (OBC) and magnesium-modified citrus peel biochar (OBC-mg) were selected as additive materials, and organic carbon mineralization experiments were carried out in citrus orchard soil. OBC and OBC-Mg were applied to citrus orchard soils at four application rates (0, 1, 2, and 4%), and incubated at a constant temperature for 100 days. Compared with CK, the cumulative mineralization of soil organic carbon decreased by 5.11% with 1% OBC and 2.14% with 1% OBC-Mg. The application of OBC and OBC-Mg significantly increased the content of soil organic carbon fraction, while the content of soil organic carbon fraction was higher in OBC-Mg treated soil than in OBC treated soil. Meanwhile, the cumulative mineralization of soil organic carbon was significantly and positively correlated with the activities of soil catalase, urease and sucrase. The enzyme activities increased with the cumulative mineralization of organic carbon, and the enzyme activities of the OBC-Mg treated soil were significantly higher than those of the OBC treated soil. The results indicated that the OBC-Mg treatment inhibited the organic carbon mineralization in citrus orchard soils and was more favorable to the increase of soil organic carbon fraction. The Mg-modified approach improved the carbon sequestration potential of biochar for citrus orchard soils and provided favorable support for the theory of soil carbon sink in orchards.

7.
Huan Jing Ke Xue ; 43(9): 4636-4646, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096604

RESUMO

Efficient utilization of organic materials based on the rich resources in the karst region can promote soil fertility. Microorganisms have a crucial influence on soil phosphorus availability. phoD is considered to be the encoding phosphatase gene that can reflect the hydrolysis of organophosphorus compounds for the soil bacterial community. Molecular analysis of the phoD-harboring bacterial gene provides insight into promoting soil phosphorus availability under different fertilization managements. However, the effects of organic materials on soil phosphorus fractions associated with phoD-harboring bacterial communities are poorly understood. This study comprehensively investigated the effects of organic materials on soil phosphorus availability and explored environmental drivers of phoD-harboring bacteria in the Karst region. Here, six treatments were designed in the field as follows:non-fertilized control (CK), inorganic fertilization (NPK), inorganic fertilization combined with straw (NPKS), inorganic fertilization combined with manure (NPKM), inorganic fertilization combined with sludge (NPKL), and inorganic fertilization combined with sugarcane ash (NPKA). The phoD-harboring bacterial community in Karst region soil was analyzed using high-throughput sequencing. The results showed that the content of total P (TP), Olsen-P, and Ca2-P increased with the years after organic material application, whereas the content of CaCl2-P first decreased and then increased. Compared to that under the CK treatment, organic material application, especially NPKL treatment, significantly increased soil total nitrogen (TN), TP, Olsen-P, CaCl2-P, and Ca2-P contents, followed by those in the NPKA and NPKM treatments. Correlation analysis showed that the contents of CaCl2-P, Ca2-P, and Olsen-P were significantly positively correlated with soil exchangeable calcium (Ca-ex) content. Redundancy analysis (RDA) showed that TN, Ca-ex, soil organic carbon (SOC), and total potassium (TK) contents were the key factors affecting soil P fractions. Using high-throughput sequencing, we found that only NPKS increased the richness of phoD-harboring bacteria compared to that under the control treatment. No significant difference was observed in the phoD-harboring bacterial community among all treatments. The RDA model selected the Ca-ex, TK, Olsen-P, pH, and SOC as the key environmental predictors for the phoD-harboring bacterial community. In summary, soil phosphorus availability can be improved through the input of organic materials and inorganic fertilizer combined with manure, sludge, and ash. These additions were suitable for nutrient management and sustainable development in farmland soil in the Karst region of Guangxi.


Assuntos
Fósforo , Solo , Bactérias/genética , Cloreto de Cálcio , Carbono , China , Esterco , Nitrogênio/análise , Fósforo/análise , Esgotos , Solo/química
8.
Bioresour Technol ; 348: 126808, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35131458

RESUMO

The decomposition and transformation of organic matters during composting process are performed by various microorganisms. However, the bacterial communities and their functions usually vary with composting materials. Here the dominant bacterial genera and their functions were identified at the thermophilic phase during composting of mulberry branches with silkworm excrement (MSE), pig manure (MPM) and cow manure (MCD). The activities of ß-glucosidase and endoglucanase were highest for MCD (1.31 and 17.15 µg g-1 min-1) and lowest for MPM (0.92 and 14.22 µg g-1 min-1). Random Forest model and correlation analysis revealed that Stenotrophomonas, Bacillus, and Sinibacillus were the dominant bacterial genera involved in lignocellulose degradation regardless of composting materials. Carbohydrate metabolism, amino acid metabolism, and DNA replication and repair were primary functions of the bacterial communities for the three types of composting. The quantification of lignocellulose degradation genes further verified the dominant functions of the bacterial communities.


Assuntos
Compostagem , Animais , Bovinos , Feminino , Lignina , Esterco/microbiologia , Solo , Suínos
9.
Huan Jing Ke Xue ; 43(2): 1069-1076, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075881

RESUMO

Two typical subtropical agricultural soils, a flooded paddy soil and its adjacent upland, were collected and then incubated with or without 13C-labeled crop residue (maize straw) for 40 days. During the incubation, the mineralization rate of the crop residue was monitored, and the 13C incorporated into fungal and bacterial phospholipid fatty acid (PLFA) was quantified. At the early stage (0.25-1 days), the mineralization rate of crop residue was faster in paddy soil than that in upland soil, whereas the opposite trend was observed from 2 to 20 days. At the late stage (21-40 days), the mineralization rate was similar in both soils. At the end of incubation, 11% of the total crop residue was mineralized in paddy soil, which was about half of that in upland soil (20%). Although paddy soil had a higher amount of microbial biomass (indicated by total PLFA), the total amounts of 13C-PLFA were comparable in both soils, and the enrichment ratio (proportion of 13C to total C in PLFA) was lower in paddy soil than that in upland soil. This indicated that the microbial community in paddy soil was less active in the uptake of crop residue C than that in upland soil. During the incubation, the residue-derived 13C was mainly distributed in bacterial PLFA (up to 86% of total 13C-PLFA, including 59% in gram-positive and 27% in gram-negative bacteria) in paddy soil, and up to 75% of total 13C-PLFA distributed in fungal PLFAs was in upland soil. Thus, bacteria dominated the utilization of crop residue in paddy soil versus fungi in upland soil. Compared with that in upland soil, the microbial activity was suppressed in the anaerobic condition caused by flooding in paddy soil, with a stronger inhibition of fungi than bacteria. Considering the discrepancies of life strategies and necromass turnover between bacteria and fungi, the different dominant microbial groups in the utilization of crop residue in water-logged and well-drained conditions could lead to the distinct accumulation and stabilization of microbial-derived organic matter in paddy and upland soils.


Assuntos
Oryza , Solo , Agricultura , Carbono , Microbiologia do Solo
10.
Sci Total Environ ; 822: 153179, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35051465

RESUMO

Microbial communities contribute to sustaining the function of terrestrial ecosystems and are influenced by soil type and climate gradients. The effects of karst and non-karst soils on bacterial and fungal profiles for seven climate gradients were assessed to better understand bacterial and fungal diversity and community composition in response to soil type with changes in soil physicochemical properties under different temperatures and precipitations. Bacterial and fungal abundance, diversity, and community composition differed between karst and non-karst forests. Bacterial and fungal richness, Shannon index, and bacterial abundance in karst forests were higher than non-karst forests, but the fungal abundance was lower. Mean annual temperature was negatively correlated with bacterial diversity in the karst forest and fungal abundance in karst and non-karst forests. The community composition of bacteria and fungi differed among these two soil types. The karst forest had greater connectivity among bacterial and fungal communities than non-karst forests. The bacterial members of Acidobacteria, Proteobacteria, Actinobacteria, and fungal groups of Ascomycota and Basidiomycota were mainly connected with other taxa in the network, implying that taxa were associated with highly functional potential. The relative abundance of Actinobacteria and Ascomycota was higher in karst than in non-karst forests. Proteobacteria and Basidiomycota showed the opposite results. A random forest and multiple regression tree analyses revealed that soil properties, specifically pH, calcium, and total nitrogen, were the main factors influencing the variation in bacterial and fungal profiles between karst and non-karst forests. This study provides novel evidence that the abundant microbial taxa were kinless hubs in co-occurrence patterns. Controlling complex networks of species interactions may contribute to improving soil nutrient processes rather than microbial diversity, enhancing our understanding of developing sustainable recovery strategies in fragile ecosystems.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias , China , Ecossistema , Fungos , Solo/química
11.
Sci Total Environ ; 767: 145298, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636790

RESUMO

Vegetation restoration has been proposed as an effective strategy for increasing soil organic carbon (SOC) sequestration. However, the responses of SOC to managed and natural vegetation restoration strategies at a large scale are poorly understood due to the varying SOC components and changing climatic conditions. Here, we measured bulk SOC, particulate organic carbon (POC), and mineral-associated organic carbon (MOC) after 15 years of vegetation restoration along an elevation gradient with a corresponding temperature gradient in the calcareous soils of karst region, Southwest China. We compared managed plantation forest and naturally recovered shrubland vegetation restoration strategies, using cropland and mature forest as references. Overall, we found that the SOC and POC densities in both plantation forest and shrubland were significantly higher than in the cropland but lower than in the mature forest. There were no significant differences in the SOC pool between the plantation forest and shrubland. Furthermore, the relative changes in the SOC and POC densities increased with increasing mean annual temperature in the plantation forest and shrubland. Our results showed that both vegetation restoration strategies, characterized by higher soil microbial abundance and exchangeable Ca concentration, were beneficial to POC but not MOC accumulation, and sufficiently compensated SOC decomposition at lower elevation with higher MAT. Our results highlight the potential of both vegetation restoration strategies for promoting SOC accumulation in warmer karst regions and emphasize the necessity to understand soil carbon stabilization mechanisms in calcareous soils.

12.
Sci Total Environ ; 711: 134967, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000331

RESUMO

Soil diazotrophs have been known to be essential in biological nitrogen (N) fixation, which contributes to the sustainability of agricultural ecosystems. However, there remains an inadequacy of research on the effects of different N inputs from N fertilization and from symbiotic N fixation associated with legumes on the diazotroph communities in agricultural ecosystems. Hence, we investigated the variations in diazotroph abundance and community composition as well as the soil properties with different N inputs in the Guimu-1 hybrid elephant grass cultivation on karst soils in China. We conducted six different N treatments: control, Amorpha fruticosa planting at a spacing of 1.5 × 2 m (AFD1), A. fruticosa planting at a spacing of 1 × 2 m (AFD2), N fertilization (N), A. fruticosa planting at a spacing of 1.5 × 2 m with N fertilization (AFD1N), and A. fruticosa planting at a spacing of 1 × 2 m with N fertilization (AFD2N). Our results showed that the interaction between sampling time and N fertilization significantly affected the diazotroph abundance. In July, the diazotroph abundance significantly decreased in the N fertilization treatments: N, AFD1N, and AFD2N, compared to that in the control. The richness and Chao1 estimator of diazotrophs significantly increased in AFD2N and AFD1 correspondingly in December and July, relative to those in the control. Co-occurrence networks showed species-species interactions with high negative correlations that occurred more in the control than in the N input plots. The N input from N fertilization and legume planting directly increased the ammonium N and nitrate N and consequently affected the dissolved organic N and pH of the soil, thereby altering the diazotroph abundance and richness. Our findings demonstrated that both N fertilization and legumes could reduce the interspecific competition among diazotroph species by providing greater N availability in the forage grass.


Assuntos
Fabaceae , China , Ecossistema , Fertilizantes , Pradaria , Nitrogênio , Solo , Microbiologia do Solo
13.
Huan Jing Ke Xue ; 40(6): 2912-2919, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854686

RESUMO

The use of straw returning plus nitrogen fertilizer on farmland is one of the important agronomic practices for adjusting soil organic carbon (SOC) transformations. To explore the mechanisms of straw and nitrogen fertilizer application on straw and SOC mineralization in long-term fertilized soils, an incubation experiment with the 13C isotope tracing technique was conducted, which involved three long-term fertilized models in typical karst soils (no fertilization, inorganic fertilization, and a combination of inorganic fertilization and straw). To study the mechanisms of 13C-labeled straw and SOC mineralization, four treatments were designed as follows:no straw and nitrogen (control), and straw combined with three levels of nitrogen fertilizer (0, 214.0, and 571.0 mg·kg-1 soil). The results showed that cumulative mineralization amounts of straw-derived organic carbon in long-term fertilized soils were markedly higher than those in non-fertilized soil. Straw-derived organic carbon mineralization was significantly affected by nitrogen fertilizer levels. The positive priming effects (PE) in long-term fertilized soils were much lower than those in non-fertilized soil. The PE was decreased at the low nitrogen fertilizer level but increased at the high nitrogen fertilizer level. The principal component analysis (PCA) of phospholipid fatty acids (PLFAs) indicated that the soil microbial community structure was greatly affected by the long-term fertilization models and combined straw and nitrogen fertilizer application. Moreover, the content of PLFAs in soil microorganisms, namely, bacteria and fungi, were remarkably increased by the straw plus nitrogen fertilizer (values increased by 40.3%-53.0%, 41.1%-62.6%, and 60.5%-148.6% compared with control), but levels were not significantly affected by nitrogen fertilizer levels alone. The ratios between PLFAs of soil gram-positive and gram-negative bacteria (G+/G-) decreased and were stable at around 0.8. The structure equation models (SEM) demonstrated that the combination of straw and nitrogen affected the soil gram-positive and gram-negative bacteria structure and increased the soil DOC content, which promoted the decomposition of straw and affected the mineralization of SOC. These results indicate that straw returning plus low nitrogen fertilizer can improve the SOC sequestration capacity in karst farmland.

14.
Sci Total Environ ; 678: 551-558, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31078845

RESUMO

Legumes can increase nitrogen (N) input to soil via N2 fixation, and arbuscular mycorrhizal fungi (AMF) can colonize legumes, which further promotes the acquisition of nutrients such as phosphorus (P). Nevertheless, little is known about how different legume species or planting densities affect soil AMF communities. We measured soil AMF abundance, diversity, and community composition in two legume species that had been planted at two densities in a karst grassland. Five treatments were used: control (CK), Amorpha fruticosa at 1.5 × 2 m density (AFD1), A. fruticosa at 1 × 1 m density (AFD2), Indigofera atropurpurea at 1.5 × 2 m density (IAD1), and I. atropurpurea at 1 × 1 m density (IAD2). The results showed that A. fruticosa plots were significantly richer in Redeckera spp., while I. atropurpurea plots were richer in Septoglomus. AMF abundance in AFD1, AFD2, and IAD1 was significantly higher than in CK, but AMF abundance in IAD2 was significantly lower than that in the other treatments. AMF richness and Chao1 estimator in AFD1 were significantly higher than in CK. Funneliformis, Septoglomus, and Acaulospora were significantly more abundant in IAD2 than in the other treatments. The interaction between legume species and density had a significant effect on AMF abundance and community composition. AMF abundance and diversity were significantly negatively and positively correlated with available P and microbial biomass N, respectively. These results suggest that different species and densities of legumes may increase available N, which could improve AMF abundance and alleviate soil P deficiencies. Planting A. fruticosa or I. atropurpurea at a low density may be an effective method to increase AMF colonization of roots, and thus, nutrient transport in karst grasslands.


Assuntos
Fabaceae/metabolismo , Pradaria , Microbiota , Micorrizas/fisiologia , Solo/química , China , Nitrogênio/metabolismo , Nutrientes/metabolismo , Fósforo/metabolismo , Densidade Demográfica , Especificidade da Espécie
15.
Huan Jing Ke Xue ; 40(4): 1965-1972, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087943

RESUMO

In order to understand the influence of environmental factors on the carbonate conversion of the Karst soil, typical brown limestone and red soil samples were collected from the Karst ecosystem, and a 100-day incubation experiment was conducted. The characteristics of inorganic carbon release from the soil under three temperature gradients (15, 25, and 35℃) and water contents (30%, 65%, and 100% WHC) were studied by adding 14C-CaCO3 for 100 d. The results showed that under the different soil moisture and temperature conditions, the maximum rate and the cumulative amount of inorganic carbon release from the soil over 100 days varied between 0.7-16.8 mg·(kg·d)-1and 5.9-29.4 mg·kg-1, respectively, in the brown limestone soil, and varied between 39.7-103.3 mg·(kg·d)-1 and 83.3-135.1 mg·kg-1, respectively in the red soil. Under drought conditions (30% WHC), the cumulative amount of inorganic carbon release was the highest for the two soils and increased with increasing temperature. At 65% WHC and 100% WHC, increasing temperature can still promote inorganic carbon release from the soil. The temperature sensitivity of the soil inorganic carbon release in the brown limestone soil is greater than that of the red soil, which is significantly affected by soil moisture. The soil pH and MBC content were remarkably increased after adding CaCO3, and the difference between the two soils was significant. The variance partition showed that temperature and soil moisture can explain 7.6% and 2.0% of the soil inorganic carbon release variability, respectively. In conclusion, warming and drought aggravate inorganic carbon release from brown limestone soil in the southwestern Karst region. Therefore, in the context of global warming and more frequent extreme precipitation events, the effects of soil moisture and temperature on inorganic carbon conversion in soil should be fully considered when studying the soil carbon cycle and its dynamic changes in southwestern Karst. This research can provide a scientific basis for further understanding the influence of climate change on the global carbon cycle.

17.
Appl Microbiol Biotechnol ; 103(4): 1961-1972, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30607492

RESUMO

In this study, we aimed to investigate lignin accumulation and its relationship with the composition of bacterial laccase-like genes in three arable lands (i.e., upland limestone soil (UL), upland red soil (UR), and upland-paddy rotation red soil (UPR)), which are subjected to long-term straw incorporation. After 9-13 years of straw incorporation, the lignin content significantly increased from 337.1, 414.5, and 201.6 mg/kg soil to 2096.5, 2092.4, and 1972.2 mg/kg soil in UL, UR, and UPR, respectively. The dominant lignin monomer changed from vanillyl (V)-type to cinnamyl (C)-type in UR. Both V- and C-types were the dominant monomers in UPR, and V-type monomer remained the dominant monomer in UL. Compared with the treatment without straw, straw incorporation significantly promoted the activity of laccase enzyme and the abundance of bacterial laccase-like genes in all soils. The redundancy analysis showed that the main influencing factors on lignin accumulation patterns with straw incorporation were the laccase enzyme activity, nitrogen availability, and some specific bacterial communities possessing the laccase-like genes (e.g., Thermotogae and Acidobacteria). The variation partitioning analysis confirmed that the strongest influencing factor on lignin accumulation was the composition of bacterial laccase-like genes (explained 31.4% of variance). The present study provides novel insights into the importance of bacterial laccase-like genes in shaping lignin monomer accumulation with straw incorporation in arable soils.


Assuntos
Proteínas de Bactérias/genética , Lacase/genética , Lignina/análise , Caules de Planta/metabolismo , Microbiologia do Solo , Solo/química , Proteínas de Bactérias/metabolismo , Lacase/metabolismo , Microbiota , Nitrogênio/metabolismo
18.
Huan Jing Ke Xue ; 39(12): 5657-5664, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628412

RESUMO

To explore if there are species-preferential characteristics of arbuscular mycorrhizal (AM) and host plants in karst regions, 13 shrub plants (including leguminosae and non-leguminosae) were selected to study the AM community structure of root samples. The soil nutrients in rhizosphere soils significantly differ among shrubs; they are higher in leguminosae than in non-leguminosae. Cluster analysis shows that all 13 shrubs can be infected by AM. Significant differences of the AM community structure were observed among root samples from different shrubs, especially leguminosae and non-leguminosae. Redundancy analysis shows that soil Olsen-P, pH, and total nitrogen significantly influence the AM community structure of plant roots, although the factors affecting this fungus in leguminosae and non-leguminosae differ. These results indicate species-preferential characteristics of AM and host plants in karst regions, especially of the plant function group compared with plant species, suggesting that these characteristics should be taken into account when AM fungi are used for vegetation restoration in karst regions.


Assuntos
Micorrizas/classificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Fabaceae/microbiologia , Nitrogênio , Solo/química
19.
Huan Jing Ke Xue ; 38(11): 4828-4835, 2017 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965429

RESUMO

Slope position is a key factor used in the restoration of vegetation in degraded karst ecosystems, and arbuscular mycorrhizal fungi (AMF) play an important role in improving this plant growth. However, little information is available regarding the effects of slope position on arbuscular mycorrhizal fungi. To test whether these fungal communities are impacted by slope position, the abundance, and composition of soil, AMF communities along the slope position were analyzed through terminal restriction fragment length polymorphism (T-RFLP) and real-time fluorescence-based quantitative polymerase chain reaction (real-time PCR). The diversity, richness, and evenness of plant species were evaluated through field surveys and soil properties were also measured. The results show that content of carbon, nitrogen, and phosphorus in the soil are different along the slope, and the trends identified were that the upper slope position ≈ middle slope position > lower slope position. The trend for AMF abundance was identified as upper slope position ≈ middle slope position < lower slope position. The available phosphorus content in the soil correlated significantly with the AMF abundance. A redundancy analysis showed that the structure of soil, AMF, and plant community compositions differed along the slope. The plant evenness index was shown to significantly contribute to the distribution of the AMF community structure, while the total nitrogen and total organic carbon content of the soil had a significant effect on the plant community structure. These results indicate that the interaction effects of soil nutrients and plant community structures on the soil AMF community structures suggest micro-morphology should be taken into account when AMF is used to restore vegetation in karst regions.


Assuntos
Ecossistema , Micorrizas/classificação , Microbiologia do Solo , Carbono/análise , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/microbiologia , Solo
20.
Huan Jing Ke Xue ; 38(3): 1253-1261, 2017 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965601

RESUMO

Lithology is a key factor when used to restore vegetation in karst degraded ecosystems, and arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play an important role in improving plant growth. However, little information is available regarding the effects of lithology on these two groups of microorganisms. To test whether these microbial communities are impacted by lithology, the abundance and composition of soil AM fungal and nitrogen-fixing bacteria communities were determined through terminal restriction fragment length polymorphism (T-RFLP) and real-time fluorescence-based quantitative PCR (real-time PCR). Three types of lithology (dolomite, limestone and dolomite-limestone) were selected in this study. The diversity, richness, and evenness of plant species were evaluated through field surveys and soil properties were measured. The results showed that the abundances of soil nitrogen-fixing bacteria and arbuscular mycorrhizal fungal communities were significantly influenced by lithology. The abundances of these two groups of microorganisms were the lowest in dolomite soil, inferior to dolomite-limestone soil, while highest in limestone soil. Similarly, the composition of soil nitrogen-fixing bacteria and AM fungi communities varied among lithology. A significant linear correlation was observed among soil organic carbon, available phosphorus, clay content and nitrogen-fixing bacterial abundance (P<0.05), and a significant linear correlation among total nitrogen, clay content and AM fungal abundance (P<0.05). Redundancy analysis showed that the composition of nitrogen-fixing bacterial community was closely linked to plant evenness, and the AM fungal community composition was closely linked to plant diversity (plant evenness, Shannon-wiener and richness). These results indicated that lithology influenced the abundances and compositions of soil nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungal communities mainly through plant and soil properties.


Assuntos
Ecossistema , Micorrizas , Bactérias Fixadoras de Nitrogênio , Microbiologia do Solo , Solo/química , Silicatos de Alumínio/análise , Carbono/análise , Argila , Fósforo/análise , Raízes de Plantas , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...